All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-scale Dimensionality Reduction with F-Transforms in Time Series Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402N58" target="_blank" >RIV/61988987:17610/23:A2402N58 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-39774-5_3" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-39774-5_3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-39774-5_3" target="_blank" >10.1007/978-3-031-39774-5_3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-scale Dimensionality Reduction with F-Transforms in Time Series Analysis

  • Original language description

    Our first contribution to this topic is as follows: we show that in the case of large datasets, dimensionality reduction should be divided into several subtasks, determined by the choice of keypoints as centers corresponding to clusters. For specific time series datasets, we connect keypoints to centers that maximize the values of the non-local Laplacians. Moreover, we propose to use the scale space approach and consider a scale-dependent sequence of non-local Laplacians. As a second contribution, we use non-traditional kernels obtained from the theory of F-transforms [11]. This allows to simplify the scaling and selection of keypoints, reduce their number and increase reliability. We also propose a new keypoint descriptor and test it against high volatility financial time series.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-06915S" target="_blank" >GA18-06915S: New approaches to aggregation operators in analysis and processing of data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Intelligent and Fuzzy Systems. INFUS 2023. Lecture Notes in Networks and Systems, vol 758

  • ISBN

    978-3-031-39773-8

  • ISSN

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    22-34

  • Publisher name

    Springer Cham

  • Place of publication

    Switzerland

  • Event location

    Istanbul

  • Event date

    Aug 22, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article