Linked orbits of homeomorphisms of the plane and Gambaudo-Kolev Theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502A9A" target="_blank" >RIV/61988987:17610/24:A2502A9A - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/linked-orbits-of-homeomorphisms-of-the-plane-and-gambaudokolev-theorem/A81702D3AF682475649B326CDD888C58" target="_blank" >https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/linked-orbits-of-homeomorphisms-of-the-plane-and-gambaudokolev-theorem/A81702D3AF682475649B326CDD888C58</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S030500412400015X" target="_blank" >10.1017/S030500412400015X</a>
Alternative languages
Result language
angličtina
Original language name
Linked orbits of homeomorphisms of the plane and Gambaudo-Kolev Theorem
Original language description
Let h : R 2 → R 2 be an orientation preserving homeomorphism of the plane. For any bounded orbit O(x) = {h n (x) : n ∈ Z} there exists a fixed point x ∈ R 2 of h linked to O(x) in the sense of Gambaudo: one cannot find a Jordan curve C ⊆ R 2 separating O(x) and x , that is isotopic to h(C) in R 2 (O(x) ∪ {x }).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Proceedings of the Cambridge Philosophical Society
ISSN
0305-0041
e-ISSN
1469-8064
Volume of the periodical
—
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
6
Pages from-to
103-108
UT code for WoS article
001316232000001
EID of the result in the Scopus database
2-s2.0-85205097152