Parameterized family of annular homeomorphisms with pseudo-circle attractors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502KQW" target="_blank" >RIV/61988987:17610/24:A2502KQW - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0022039624003735?pes=vor&utm_source=scopus&getft_integrator=scopus" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039624003735?pes=vor&utm_source=scopus&getft_integrator=scopus</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2024.06.008" target="_blank" >10.1016/j.jde.2024.06.008</a>
Alternative languages
Result language
angličtina
Original language name
Parameterized family of annular homeomorphisms with pseudo-circle attractors
Original language description
In this paper we construct a paramaterized family of annular homeomorphisms with Birkhoff-like rotational attractors that vary continuously with the parameter, are all homeomorphic to the pseudo-circle, display interesting boundary dynamics and furthermore preserve the induced Lebesgue measure from the circle. Namely, in the constructed family of attractors the outer prime ends rotation number vary continuously with the parameter through the interval [0,1/2]. This, in particular, answers a question from [J. London Math. Soc. (2) {bf 102} (2020), 557--579]. To show main results of the paper we first prove a result of an independent interest, that Lebesgue-measure preserving circle maps generically satisfy the crookedness condition which implies that generically the inverse limits of Lebesgue measure-preserving circle maps are hereditarily indecomposable. For degree one circle maps, this implies that the generic inverse limit in this context is the R.H. Bing's pseudo-circle.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
—
Issue of the periodical within the volume
25 October 2024
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
102-132
UT code for WoS article
001360774100001
EID of the result in the Scopus database
2-s2.0-85196561502