All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized family of annular homeomorphisms with pseudo-circle attractors

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502KQW" target="_blank" >RIV/61988987:17610/24:A2502KQW - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0022039624003735?pes=vor&utm_source=scopus&getft_integrator=scopus" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039624003735?pes=vor&utm_source=scopus&getft_integrator=scopus</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2024.06.008" target="_blank" >10.1016/j.jde.2024.06.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized family of annular homeomorphisms with pseudo-circle attractors

  • Original language description

    In this paper we construct a paramaterized family of annular homeomorphisms with Birkhoff-like rotational attractors that vary continuously with the parameter, are all homeomorphic to the pseudo-circle, display interesting boundary dynamics and furthermore preserve the induced Lebesgue measure from the circle. Namely, in the constructed family of attractors the outer prime ends rotation number vary continuously with the parameter through the interval [0,1/2]. This, in particular, answers a question from [J. London Math. Soc. (2) {bf 102} (2020), 557--579]. To show main results of the paper we first prove a result of an independent interest, that Lebesgue-measure preserving circle maps generically satisfy the crookedness condition which implies that generically the inverse limits of Lebesgue measure-preserving circle maps are hereditarily indecomposable. For degree one circle maps, this implies that the generic inverse limit in this context is the R.H. Bing's pseudo-circle.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

  • Issue of the periodical within the volume

    25 October 2024

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    31

  • Pages from-to

    102-132

  • UT code for WoS article

    001360774100001

  • EID of the result in the Scopus database

    2-s2.0-85196561502