How to Verify Validity of Non-trivial Logical Syllogisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F24%3AA2502NVL" target="_blank" >RIV/61988987:17610/24:A2502NVL - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-67192-0_56" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-67192-0_56</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-67192-0_56" target="_blank" >10.1007/978-3-031-67192-0_56</a>
Alternative languages
Result language
angličtina
Original language name
How to Verify Validity of Non-trivial Logical Syllogisms
Original language description
In this publication we will focus on the presentation of several methods by which we are able to verify the validity of generalized Peterson syllogisms. We will focus on a special group of so-called non-trivial syllogisms when a generalized intermediate quantifier is considered in both premises, e.g. Most, Several, Many, etc.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/EH22_008%2F0004583" target="_blank" >EH22_008/0004583: Research of Excellence on Digital Technologies and Wellbeing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Networks and Systems Series
ISBN
978-3-031-67191-3
ISSN
2367-3370
e-ISSN
2367-3389
Number of pages
8
Pages from-to
499-506
Publisher name
Springer
Place of publication
Cham
Event location
Canakkale
Event date
Jul 16, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—