All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigating convergence of linear SVM implemented in PermonSVM employing MPRGP algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F18%3A10239488" target="_blank" >RIV/61989100:27120/18:10239488 - isvavai.cz</a>

  • Alternative codes found

    RIV/68145535:_____/18:00495870 RIV/61989100:27240/18:10239488 RIV/61989100:27730/18:10239488 RIV/61989100:27740/18:10239488

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-97136-0_9" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-97136-0_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-97136-0_9" target="_blank" >10.1007/978-3-319-97136-0_9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigating convergence of linear SVM implemented in PermonSVM employing MPRGP algorithm

  • Original language description

    This paper deals with the novel PermonSVM machine learning tool. PermonSVM is a part of our PERMON toolbox. It implements the linear two-class Support Vector Machines. PermonSVM is built on top of PermonQP (PERMON module for quadratic programming) which in turn uses PETSc. The main advantage of PermonSVM is that it is parallel. The parallelism comes from a distribution of matrices and vectors. The MPRGP algorithm, implemented in PermonQP, is used as a solver of the quadratic programming problem arising from the dual SVM formulation. The scalability of MPRGP was proven in problems of mechanics with more than billion of unknowns solved on tens of thousands of cores. Apart from the scalability of our approach, we also investigate the relations between training rate, hyperplane margin, the value of the dual functional, and the norm of the projected gradient. (C) Springer International Publishing AG, part of Springer Nature 2018.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11087

  • ISBN

    978-3-319-97135-3

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    115-129

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Karolinka

  • Event date

    May 22, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article