All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a global Lagrangian construction for ordinary variational equations on 2-manifolds

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F19%3A10242515" target="_blank" >RIV/61989100:27120/19:10242515 - isvavai.cz</a>

  • Result on the web

    <a href="https://aip.scitation.org/doi/10.1063/1.5100351" target="_blank" >https://aip.scitation.org/doi/10.1063/1.5100351</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5100351" target="_blank" >10.1063/1.5100351</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a global Lagrangian construction for ordinary variational equations on 2-manifolds

  • Original language description

    Locally variational systems of differential equations on smooth manifolds, having certain de Rham cohomology group trivial, automatically possess a global Lagrangian. This important result due to Takens is, however, of sheaf-theoretic nature. A new constructive method of finding a global Lagrangian for second-order ODEs on 2-manifolds is described on the basis of the solvability of the exactness equation for the Lepage 2-forms and the top-cohomology theorems. Examples from geometry and mechanics are discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10100 - Mathematics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    092902

  • UT code for WoS article

    000488816700027

  • EID of the result in the Scopus database

    2-s2.0-85072618818