Performance Evaluation of Pre-foamed Ultra-lightweight Composites Incorporating Various Proportions of Slag
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F21%3A10246320" target="_blank" >RIV/61989100:27120/21:10246320 - isvavai.cz</a>
Result on the web
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=F1h89gSMfy6vjsiIVF7&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=F1h89gSMfy6vjsiIVF7&page=1&doc=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3311/PPci.16996" target="_blank" >10.3311/PPci.16996</a>
Alternative languages
Result language
angličtina
Original language name
Performance Evaluation of Pre-foamed Ultra-lightweight Composites Incorporating Various Proportions of Slag
Original language description
This research examines the feasibility of using a mixture of cement, fly ash, ground granulated blast-furnace slag, and river sand to manufacture pre-foamed ultra-lightweight composite (PULC). Four PULC specimens were prepared with the substitution of cement by slag at 0, 10, 20, and 30 % by weight. The engineering properties of PULC samples were evaluated through the tests of compressive strength, dry density, water absorption, drying shrinkage, and thermal conductivity. Besides, numerical simulation of heat transfer through the PULC brick wall and the microstructure observation were performed. The performance of PULC mixtures incorporating slag showed higher effectiveness than merely used cement. The substitution of 20 % cement by slag resulted in the highest compressive strength as well as the lowest value of water absorption of the PULC samples. Also, the efficiency of the thermal conductivity was in inverse proportion with the density of PULC specimens and it was right for water absorption and drying shrinkage. Moreover, numerical simulations showed that the temperature distribution values in the wall made by PULC material were smaller than in the wall made by the normal clay brick in the same position. Besides, the microstructure analysis revealed that the existence of slag generated a more dense structure of PULC samples with the addition of calcium-silicate-hydrate (C-S-H) gel, especially for a mix containing 20 % slag. Thus, the results of this study further demonstrated that a 20 % slag was the optimal content for the good engineering properties of the PULC samples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20100 - Civil engineering
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Periodica Polytechnica: Civil Engineering
ISSN
0553-6626
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
1
Country of publishing house
HU - HUNGARY
Number of pages
11
Pages from-to
276-286
UT code for WoS article
000599123000021
EID of the result in the Scopus database
—