Numerical Solution of Bending of the Beam with Given Friction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F21%3A10248979" target="_blank" >RIV/61989100:27120/21:10248979 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/9/8/898" target="_blank" >https://www.mdpi.com/2227-7390/9/8/898</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9080898" target="_blank" >10.3390/math9080898</a>
Alternative languages
Result language
angličtina
Original language name
Numerical Solution of Bending of the Beam with Given Friction
Original language description
We are interested in a contact problem for a thin fixed beam with an internal point obstacle with possible rotation and shift depending on a given swivel and sliding friction. This problem belongs to the most basic practical problems in, for instance, the contact mechanics in the sustainable building construction design. The analysis and the practical solution plays a crucial role in the process and cannot be ignored. In this paper, we consider the classical Euler-Bernoulli beam model, which we formulate, analyze, and numerically solve. The objective function of the corresponding optimization problem for finding the coefficients in the finite element basis combines a quadratic function and an additional non-differentiable part with absolute values representing the influence of considered friction. We present two basic algorithms for the solution: the regularized primal solution, where the non-differentiable part is approximated, and the dual formulation. We discuss the disadvantages of the methods on the solution of the academic benchmarks.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
—
UT code for WoS article
000644530400001
EID of the result in the Scopus database
—