Load-Carrying Capacity of Double-Shear Bolted Connections with Slotted-In Steel Plates in Squared and Round Timber Based on the Experimental Testing, European Yield Model, and Linear Elastic Fracture Mechanics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F22%3A10250584" target="_blank" >RIV/61989100:27120/22:10250584 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1996-1944/15/8/2720/htm" target="_blank" >https://www.mdpi.com/1996-1944/15/8/2720/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/ma15082720" target="_blank" >10.3390/ma15082720</a>
Alternative languages
Result language
angličtina
Original language name
Load-Carrying Capacity of Double-Shear Bolted Connections with Slotted-In Steel Plates in Squared and Round Timber Based on the Experimental Testing, European Yield Model, and Linear Elastic Fracture Mechanics
Original language description
Nowadays, the use of timber as a building material is gaining more prominence. When designing timber structures, it is necessary to pay increased attention to the design of their connections. The commonly used connections are dowel-type connections, which are often used in combination with steel plates slotted into cut-outs in timber members. The presented paper deals with the behavior of double-shear bolted connections of squared timber and round timber with slotted-in steel plates. Several variants of connections with different distances between the fastener and the loaded end were selected for the experimental testing. A total of six types of test specimens were made from spruce timber, for which their selected physical properties were determined and evaluated before the experimental testing. Test specimens of bolted connections were first tested in tension parallel to the grain until failure under quasi-static loading. The connections were broken by splitting. Ductile failure preceded brittle failure. The actual load-carrying capacities were lowest for the lowest end distance. The load-carrying capacities for the middle and the longest end distances were comparable. The results of the experiments were then used for comparison with calculation procedures according to the standard for the design of timber structures and with calculations according to the theory of linear elastic fracture mechanics. The experiments and the analytical models were supported by a simple numerical analysis based on the finite element method. (C) 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20102 - Construction engineering, Municipal and structural engineering
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials
ISSN
1996-1944
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
"nestrankovano"
UT code for WoS article
000785659700001
EID of the result in the Scopus database
2-s2.0-85128629150