All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Numerical Procedure for Solving the Nonlinear Behaviour of a Spherical Absorber

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27120%2F23%3A10252755" target="_blank" >RIV/61989100:27120/23:10252755 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.fast.vsb.cz/export/sites/fast/228/cs/mmconference/mm-historie/mm2023_sbornik_abstraktu.pdf" target="_blank" >https://www.fast.vsb.cz/export/sites/fast/228/cs/mmconference/mm-historie/mm2023_sbornik_abstraktu.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Numerical Procedure for Solving the Nonlinear Behaviour of a Spherical Absorber

  • Original language description

    This article is aimed at providing one of possible approaches to carry out numerical computations of a nonlinear system of equations of motion. The approach is demonstrated using an example of a ball absorber placed on a support bowl. The motion of the ball is constrained to a planar problem. The numerical solution of the derived system of equations is carried out using the continuation method and the modified secant method. By these techniques, the response of the absorber to different amplitudes of harmonic excitation force is simulated. The results are presented as a graphical representation of the dependence of the response amplitude on the excitation angular frequency. These results also include the identification of stable and unstable solution regions using the values of the determinant of relevant Jacobian matrix.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20100 - Civil engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů