Behavior of Polyethylene Dust in Large-Scale Vessels with Pipes near the Explosion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27200%2F22%3A10251759" target="_blank" >RIV/61989100:27200/22:10251759 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1134/S0010508222060107" target="_blank" >https://doi.org/10.1134/S0010508222060107</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S0010508222060107" target="_blank" >10.1134/S0010508222060107</a>
Alternative languages
Result language
angličtina
Original language name
Behavior of Polyethylene Dust in Large-Scale Vessels with Pipes near the Explosion
Original language description
The aim of the article is to point out the dangers arising from the properties of plastic dust and what influence its properties have on the origin and course of the explosion. The present study deals with a sample of polyethylene dust, by-product of granulate production and storage. The explosion tests are performed on containers of a similar shape to those found in plants. The volumes of the closed vessels are 1.35 m(3) (N1) and 5.45 m(3) (N2). The tests are conducted in vessel N1 with a venting area DN 250 on the top of the vessel, in vessel N2 with a venting area DN 585 or DN 775 installed on the upper flanges of the vessels, and in vessels interconnected by pipes with a diameter DN 150 and length of 3, 6, and 10 m. The experiments show that the pressure of the explosion in technological equipment may reach higher values than those obtained in laboratory tests. During the explosion propagation in the connected vessels, the effect of overpressure appears due to precompression; as a result, the measured pressure and the rate of pressure rise are many times higher than the values measured only in the vessel itself with a venting area. As the explosion propagates from a larger volume vessel to a smaller volume vessel, the effect of precompression of the mixture increases the explosion parameters in the smaller vessel despite the opening areas of both vessels. Other elements can be also used to ensure sufficient explosion protection. The results also describe the effect of the length of the pipeline route by which the vessels are connected.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20700 - Environmental engineering
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Combustion, Explosion, and Shock Waves
ISSN
0010-5082
e-ISSN
1573-8345
Volume of the periodical
58
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
728-737
UT code for WoS article
000911930100010
EID of the result in the Scopus database
2-s2.0-85146121426