All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design of Grinding Machine Spindle

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F18%3A10239427" target="_blank" >RIV/61989100:27230/18:10239427 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.2478/mape-2018-0010" target="_blank" >http://dx.doi.org/10.2478/mape-2018-0010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2478/mape-2018-0010" target="_blank" >10.2478/mape-2018-0010</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design of Grinding Machine Spindle

  • Original language description

    When grinding high demands are usually placed on the geometrical tolerances of the workpiece surface. For this reason, the spindles of the grinding machines are normally designed with requirements for a minimum position change of the grinding disks due to external forces and bending moments. The design theory of these spindles is relatively well elaborated, as it represents the most frequently used solution in practice. However, there are also cases where it is necessary to grind some hard-to-reach areas, using a great ejection of the spindle. In these cases, it is necessary to reassess the required geometrical tolerances with regard to its necessity to comply with the minimal changes in the position of the grinding discs due to the great ejection. Where it is necessary to maintain high geometrical tolerances, it is necessary to ensure a greater rigidity of the spindle. This rigidity is usually improved by increasing its diameter. By doing this we also increase the weight of the spindle that is heavily ejected, and thus its deformation can occur due to gravity forces. That is why it is necessary to analyse the deflection of the spindle depending on its ejection in the course of its design. In the case we increase the diameter of the grinder spindle the possible applicable grinding disc diameter decreases, due to the growing size of its housing. Any grinding of hard-to-reach surfaces is therefore done in particular to improve the quality of the surface with low requirements on the geometrical tolerances. This article deals with the design patterns for a spindle used in axial grinding for inner rotating surfaces. The article contains a spindle design solution and an analysis of its deflections, depending on its ejection, and the size of the passive forces

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Multidisciplinary Aspects of Production Engineering MAPE 2018 : XV internatinal conference : conference proceedings : 05-08 September 2018, Zawiercie, Poland. Volume 1. Issue 1

  • ISBN

    978-83-65265-25-8

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    7

  • Pages from-to

    69-75

  • Publisher name

    PA NOVA

  • Place of publication

    Gliwice

  • Event location

    Zawiercie

  • Event date

    Sep 5, 2018

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article