Numerical solution of Rayleigh-Lamb frequency equation for real, imaginary and complex wavenumbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F18%3A10240684" target="_blank" >RIV/61989100:27230/18:10240684 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/18:10240684
Result on the web
<a href="https://www.matec-conferences.org/articles/matecconf/abs/2018/16/matecconf_mms2018_08011/matecconf_mms2018_08011.html" target="_blank" >https://www.matec-conferences.org/articles/matecconf/abs/2018/16/matecconf_mms2018_08011/matecconf_mms2018_08011.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/matecconf/201815708011" target="_blank" >10.1051/matecconf/201815708011</a>
Alternative languages
Result language
angličtina
Original language name
Numerical solution of Rayleigh-Lamb frequency equation for real, imaginary and complex wavenumbers
Original language description
Guided waves, especially Lamb waves or shear-horizontal waves, are widely used types of waves for ultrasonic inspection of large structures. Well known property of guided waves is their dispersive character, which means that the propagation velocity of the particular wave mode is not only a function of physical properties of the material, in which the wave propagates or the wavés frequency, but also depends on the geometry of the structure in itself. Dispersion curves provide us the information related to the dependency between the wavenumber and the frequency of the particular mode and can be obtained by a numerical solution of Rayleigh-Lamb frequency equation. A solution of Rayleigh-Lamb frequency equation forms for a given frequency and plate thickness a set of a finite number of real and pure imaginary wavenumbers and an infinite number of complex wavenumbers. Proposed paper presents a complete procedure of how to obtain all three kinds of wavenumbers for a given geometry and frequency interval. The main emphasis is placed on the effectiveness of the procedures, which are used for finding the roots of dispersion equation for all three kinds of wavenumbers. (C) 2018 The Authors, published by EDP Sciences.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MATEC Web of Conferences. Volume 157
ISBN
—
ISSN
2261-236X
e-ISSN
2261-236X
Number of pages
9
Pages from-to
—
Publisher name
EDP Sciences
Place of publication
Paříž
Event location
Sklené Teplice
Event date
Sep 5, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—