Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F19%3A10242667" target="_blank" >RIV/61989100:27230/19:10242667 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/19:10242667
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.5443" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.5443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mma.5443" target="_blank" >10.1002/mma.5443</a>
Alternative languages
Result language
angličtina
Original language name
Power law Stokes equations with threshold slip boundary conditions: Numerical methods and implementation
Original language description
For the power law Stokes equations driven by nonlinear slip boundary conditions of friction type, we propose three iterative schemes based on augmented Lagrangian approach and interior point method to solve the finite element approximation associated to the continuous problem. We formulate the variational problem which in this case is a variational inequality and construct the weak solution of the continuous problem. Next, we formulate two alternating direction methods based on augmented Lagrangian formalism in order to separate the velocity from the symmetric part the velocity gradient and tangential part of the velocity. Thirdly, we present some salient points of a path-following variant of the interior point method associated to the finite element approximation of the problem. Some numerical experiments are performed to confirm the validity of the schemes and allow us to compare them.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Methods in the Applied Sciences
ISSN
0170-4214
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
1488-1511
UT code for WoS article
000461898000011
EID of the result in the Scopus database
2-s2.0-85059831059