Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F21%3A10248043" target="_blank" >RIV/61989100:27230/21:10248043 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/21:10248043 RIV/00216305:26230/21:PU138941
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0378475420304705" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378475420304705</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2020.12.015" target="_blank" >10.1016/j.matcom.2020.12.015</a>
Alternative languages
Result language
angličtina
Original language name
Dual strategies for solving the Stokes problem with stick-slip boundary conditions in 3D
Original language description
The paper deals with the numerical realization of the 3D Stokes flow subject to threshold slip boundary conditions. The weak velocity-pressure formulation leads to an inequality type problem that is approximated by a mixed finite element method. The resulting algebraic system is non-smooth. Besides the pressure, three additional Lagrange multipliers are introduced: the discrete normal stress releasing the impermeability condition and two discrete shear stresses regularizing the non-smooth slip term. Eliminating the discrete velocity component we obtain the minimization problem for the smooth functional, expressed in terms of the pressure, the normal, and the shear stresses. This problem is solved either by a path following variant of the interior point method or by the semi-smooth Newton method. Numerical scalability is illustrated by computational experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and computers in simulation
ISSN
0378-4754
e-ISSN
—
Volume of the periodical
189
Issue of the periodical within the volume
November
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
191-206
UT code for WoS article
000683684700015
EID of the result in the Scopus database
2-s2.0-85099149188