All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experimental Study of a Hybrid Solar Collector Using TiO2/Water Nanofluids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250025" target="_blank" >RIV/61989100:27230/22:10250025 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000816239500001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000816239500001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en15124425" target="_blank" >10.3390/en15124425</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experimental Study of a Hybrid Solar Collector Using TiO2/Water Nanofluids

  • Original language description

    A case study of solar collector outdoor test of the experimental technique conducted at Avadi, Chennai. To lower the temperature of solar PV panels, water, and water-based nanofluids were utilized concurrently. Higher cell temperatures restrict the effectiveness of solar PV systems since only a minor amount of power from the sun is gathered as electricity from the energy conversion, and the remaining energy is squandered as heat. The study aimed to develop and build a hybrid collector while also analyzing its electrical and thermal energy performance. The effort was invested in improving the system&apos;s performance; the PVT collector was tested at volume concentrations of two, such as 0.5 and 1.0 L per minute (LPM). The PV/T collector determined thermal efficiency as highest was 48.38 percent and 54.03 percent, respectively, at 0.5 LPM and 1.0 LPM of volume flow rates. The PV/T collector&apos;s highest electrical efficiency was 18.32 percent and 19.35 percent, respectively, for 0.5 LPM and 1.0 LPM of volume flow rates. The results demonstrate that nanofluid has more excellent thermal conductivity than a base fluid with a little change in the fluid viscosity and density.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energies

  • ISSN

    1996-1073

  • e-ISSN

    1996-1073

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    12

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000816239500001

  • EID of the result in the Scopus database

    2-s2.0-85132690865