All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Residual Stress Build-Up in Aluminum Parts Fabricated with SLM Technology Using the Bridge Curvature Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250296" target="_blank" >RIV/61989100:27230/22:10250296 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/15/17/6057" target="_blank" >https://www.mdpi.com/1996-1944/15/17/6057</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma15176057" target="_blank" >10.3390/ma15176057</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Residual Stress Build-Up in Aluminum Parts Fabricated with SLM Technology Using the Bridge Curvature Method

  • Original language description

    In metal 3D printing with Selective Laser Melting (SLM) technology, due to large thermal gradients, the residual stress (RS) distribution is complicated to predict and control. RS can distort the shape of the components, causing severe failures in fabrication or functionality. Thus, several research papers have attempted to quantify the RS by designing geometries that distort in a predictable manner, including the Bridge Curvature Method (BCM). Being different from the existing literature, this paper provides a new perspective of the RS build-up in aluminum parts produced with SLM using a combination of experiments and simulations. In particular, the bridge samples are printed with AlSi10Mg, of which the printing process and the RS distribution are experimentally assessed with the Hole Drilling Method (HDM) and simulated using ANSYS and Simufact Additive. Subsequently, on the basis of the findings, suggestions for improvements to the BCM are made. Throughout the assessment of BCM, readers can gain insights on how RS is built-up in metallic 3D-printed components, some available tools, and their suitability for RS prediction. These are essential for practitioners to improve the precision and functionality of SLM parts should any post-subtractive or additive manufacturing processes be employed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008407" target="_blank" >EF17_049/0008407: Innovative and additive manufacturing technology - new technological solutions for 3D printing of metals and composite materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000851748900001

  • EID of the result in the Scopus database

    2-s2.0-85137896303