All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Enhancing Data Security in IoT Networks with Blockchain-Based Management and Adaptive Clustering Techniques

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252445" target="_blank" >RIV/61989100:27230/23:10252445 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2227-7390/11/9/2073" target="_blank" >https://www.mdpi.com/2227-7390/11/9/2073</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math11092073" target="_blank" >10.3390/math11092073</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Enhancing Data Security in IoT Networks with Blockchain-Based Management and Adaptive Clustering Techniques

  • Original language description

    The rapid proliferation of smart devices in Internet of Things (IoT) networks has amplified the security challenges associated with device communications. To address these challenges in 5G-enabled IoT networks, this paper proposes a multi-level blockchain security architecture that simplifies implementation while bolstering network security. The architecture leverages an adaptive clustering approach based on Evolutionary Adaptive Swarm Intelligent Sparrow Search (EASISS) for efficient organization of heterogeneous IoT networks. Cluster heads (CH) are selected to manage local authentication and permissions, reducing overhead and latency by minimizing communication distances between CHs and IoT devices. To implement network changes such as node addition, relocation, and deletion, the Network Efficient Whale Optimization (NEWO) algorithm is employed. A localized private blockchain structure facilitates communication between CHs and base stations, providing an authentication mechanism that enhances security and trustworthiness. Simulation results demonstrate the effectiveness of the proposed clustering algorithm compared to existing methodologies. Overall, the lightweight blockchain approach presented in this study strikes a superior balance between network latency and throughput when compared to conventional global blockchain systems. Further analysis of system under test (SUT) behavior was accomplished by running many benchmark rounds at varying transaction sending speeds. Maximum, median, and lowest transaction delays and throughput were measured by generating 1000 transactions for each benchmark. Transactions per second (TPS) rates varied between 20 and 500. Maximum delay rose when throughput reached 100 TPS, while minimum latency maintained a value below 1 s.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000986866900001

  • EID of the result in the Scopus database

    2-s2.0-85159169674