All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Topology Optimization of the Clutch Lever Manufactured by Additive Manufacturing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252458" target="_blank" >RIV/61989100:27230/23:10252458 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/16/9/3510" target="_blank" >https://www.mdpi.com/1996-1944/16/9/3510</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma16093510" target="_blank" >10.3390/ma16093510</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Topology Optimization of the Clutch Lever Manufactured by Additive Manufacturing

  • Original language description

    This article aims to review a redesign approach of a student racing car&apos;s clutch lever component, which was topologically optimized and manufactured by Additive Manufacturing (AM). Finite Element Method (FEM) analysis was conducted before and after a Topology Optimization (TO) process in order to achieve equivalent stiffness and the desired safety factor for the optimized part. The redesigned clutch lever was manufactured by using AM-Selective Laser Melting (SLM) and printed from powdered aluminum alloy AlSi10Mg. The final evaluation of the study deals with the experimental test and comparison of the redesigned clutch lever with the existing part which was used in the previous racing car. Using TO as a main redesign tool and AM brought significant changes to the optimized part, especially the following: reduced mass of the component (10%), increased stiffness, kept safety factor above the 3.0 value and ensured the more aesthetic design and a good surface quality. Moreover, using TO and AM gave the opportunity to consolidate multi-part assembly into a single component manufactured by one manufacturing process that reduced the production time. The experimental results justified the simulation results and proved that even though the applied load was almost 1.5x higher than the assumed one, the maximum von Mises stress on the component was still below the yield limit of 220 MPa.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008407" target="_blank" >EF17_049/0008407: Innovative and additive manufacturing technology - new technological solutions for 3D printing of metals and composite materials</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    20

  • Pages from-to

  • UT code for WoS article

    000987507000001

  • EID of the result in the Scopus database