All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

MATLAB-Based Algorithm and Software for Analysis of Wavy Collagen Fibers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10254025" target="_blank" >RIV/61989100:27230/23:10254025 - isvavai.cz</a>

  • Result on the web

    <a href="https://academic.oup.com/mam/article-abstract/29/6/2108/7441607?login=false" target="_blank" >https://academic.oup.com/mam/article-abstract/29/6/2108/7441607?login=false</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1093/micmic/ozad117" target="_blank" >10.1093/micmic/ozad117</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    MATLAB-Based Algorithm and Software for Analysis of Wavy Collagen Fibers

  • Original language description

    Knowledge of soft tissue fiber structure is necessary for accurate characterization and modeling of their mechanical response. Fiber configuration and structure informs both our understanding of healthy tissue physiology and of pathological processes resulting from diseased states. This study develops an automatic algorithm to simultaneously estimate fiber global orientation, abundance, and waviness in an investigated image. To our best knowledge, this is the first validated algorithm which can reliably separate fiber waviness from its global orientation for considerably wavy fibers. This is much needed feature for biological tissue characterization. The algorithm is based on incremental movement of local regions of interest (ROI) and analyzes two-dimensional images. Pixels belonging to the fiber are identified in the ROI, and ROI movement is determined according to local orientation of fiber within the ROI. The algorithm is validated with artificial images and ten images of porcine trachea containing wavy fibers. In each image, 80-120 fibers were tracked manually to serve as verification. The coefficient of determination R2 between curve lengths and histograms documenting the fiber waviness and global orientation were used as metrics for analysis. Verification-confirmed results were independent of image rotation and degree of fiber waviness, with curve length accuracy demonstrated to be below 1% of fiber curved length. Validation-confirmed median and interquartile range of R2, respectively, were 0.90 and 0.05 for curved length, 0.92 and 0.07 for waviness, and 0.96 and 0.04 for global orientation histograms. Software constructed from the proposed algorithm was able to track one fiber in about 1.1 s using a typical office computer. The proposed algorithm can reliably and accurately estimate fiber waviness, curve length, and global orientation simultaneously, moving beyond the limitations of prior methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Microscopy and Microanalysis

  • ISSN

    1431-9276

  • e-ISSN

    1435-8115

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

    2108-2126

  • UT code for WoS article

    001105767900001

  • EID of the result in the Scopus database