All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A comparative evaluation of nature-inspired algorithms for feature selection problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10253828" target="_blank" >RIV/61989100:27230/24:10253828 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001137777000001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001137777000001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2023.e23571" target="_blank" >10.1016/j.heliyon.2023.e23571</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A comparative evaluation of nature-inspired algorithms for feature selection problems

  • Original language description

    Feature selection is a critical component of machine learning and data mining which addresses challenges like irrelevance, noise, redundancy in large-scale data etc., which often result in the curse of dimensionality. This study employs a K-nearest neighbour wrapper to implement feature selection using six nature-inspired algorithms, derived from human behaviour and mammalinspired techniques. Evaluated on six real-world datasets, the study aims to compare the performance of these algorithms in terms of accuracy, feature count, fitness, convergence and computational cost. The findings underscore the efficacy of the Human Learning Optimization, Poor and Rich Optimization and Grey Wolf Optimizer algorithms across multiple performance metrics. For instance, for mean fitness, Human Learning Optimization outperforms the others, followed by Poor and Rich Optimization and Harmony Search. The study suggests the potential of human-inspired algorithms, particularly Poor and Rich Optimization, in robust feature selection without compromising classification accuracy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

    2405-8440

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    001137777000001

  • EID of the result in the Scopus database