Machine learning-assisted pattern recognition algorithms for estimating ultimate tensile strength in fused deposition modelled polylactic acid specimens
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10254529" target="_blank" >RIV/61989100:27230/24:10254529 - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/doi/full/10.1080/10667857.2023.2295089" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10667857.2023.2295089</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10667857.2023.2295089" target="_blank" >10.1080/10667857.2023.2295089</a>
Alternative languages
Result language
angličtina
Original language name
Machine learning-assisted pattern recognition algorithms for estimating ultimate tensile strength in fused deposition modelled polylactic acid specimens
Original language description
In this study, we investigate the application of supervised machine learning algorithms for estimating the Ultimate Tensile Strength (UTS) of Polylactic Acid (PLA) specimens fabricated using the Fused Deposition Modeling (FDM) process. 31 PLA specimens were prepared, with Infill Percentage, Layer Height, Print Speed, and Extrusion Temperature serving as input parameters. The primary objective was to assess the accuracy and effectiveness of four distinct supervised classification algorithms, namely Logistic Classification, Gradient Boosting Classification, Decision Tree, and K-Nearest Neighbor, in predicting the UTS of the specimens. The results revealed that while the Decision Tree and K-Nearest Neighbor algorithms achieved an F1 score of 0.71, the KNN algorithm exhibited a higher Area Under the Curve (AUC) score of 0.79, outperforming the other algorithms. The findings offer valuable insights into the potential use of machine learning techniques in improving the performance and accuracy of predictive models in additive manufacturing.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20300 - Mechanical engineering
Result continuities
Project
<a href="/en/project/EF17_049%2F0008407" target="_blank" >EF17_049/0008407: Innovative and additive manufacturing technology - new technological solutions for 3D printing of metals and composite materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials Technology
ISSN
1066-7857
e-ISSN
1753-5557
Volume of the periodical
39
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
55-65
UT code for WoS article
001127273900001
EID of the result in the Scopus database
—