All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A study on microstructural, mechanical properties, and optimization of wear behaviour of friction stir processed AZ31/TiC composites using response surface methodology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255367" target="_blank" >RIV/61989100:27230/24:10255367 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001290178500014" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001290178500014</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-69348-w" target="_blank" >10.1038/s41598-024-69348-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A study on microstructural, mechanical properties, and optimization of wear behaviour of friction stir processed AZ31/TiC composites using response surface methodology

  • Original language description

    The primary objective of this study is to investigate the microstructural, mechanical, and wear behaviour of AZ31/TiC surface composites fabricated through friction stir processing (FSP). TiC particles are reinforced onto the surface of AZ31 magnesium alloy to enhance its mechanical properties for demanding industrial applications. The FSP technique is employed to achieve a uniform dispersion of TiC particles and grain refinement in the surface composite. Microstructural characterization, mechanical testing (hardness and tensile strength), and wear behaviour evaluation under different operating conditions are performed. Response surface methodology (RSM) is utilized to optimize the wear rate by considering the effects of process parameters. The results reveal a significant improvement in hardness (41.3%) and tensile strength (39.1%) of the FSP-TiC composite compared to the base alloy, attributed to the refined grain structure (6-10 μm) and uniform distribution of TiC particles. The proposed regression model accurately predicts the wear rate, with a confirmation test validating an error percentage within +- 4%. Worn surface analysis elucidates the wear mechanisms, such as shallow grooves, delamination, and oxide layer formation, influenced by the applied load, sliding distance, and sliding velocity. The enhanced mechanical properties and wear resistance are attributed to the synergistic effects of grain refinement, particle-accelerated nucleation, the barrier effect of TiC particles, and improved interfacial bonding achieved through FSP. The optimized FSP-TiC composites exhibit potential for applications in industries demanding high strength, hardness, and wear resistance. (C) The Author(s) 2024.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    001290178500014

  • EID of the result in the Scopus database

    2-s2.0-85201248222