All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Condition monitoring of a CNC hobbing cutter using machine learning approach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255656" target="_blank" >RIV/61989100:27230/24:10255656 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001320696300001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001320696300001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/16878132241275750" target="_blank" >10.1177/16878132241275750</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Condition monitoring of a CNC hobbing cutter using machine learning approach

  • Original language description

    The state of cutting tools profoundly influences the efficiency of the machining processes within the manufacturing industry. Cutting tool faults are highly undesirable and can adversely impact the performance of machine tools, leading to a shortened operational lifespan. Consequently, it is imperative to minimize power consumption by closely monitoring the condition of cutting tools. This necessitates implementing an effective supervision system to continually assess and predict potential faults. In simpler terms, this entails identifying issues that could compromise the lifespan of cutting tools before they escalate into problems like wear, breakage, or complete failure. This proactive approach ensures the optimal and efficient utilization of cutting tools, reduces the need for maintenance and repair, and enhances process stability, among other benefits. In this paper, a novel approach of machine learning for the condition monitoring of hobbing cutters used in Computer Numerical Control Machines (CNCs) was built. Vibration signals from hobbing blades were recorded under various conditions, including healthy and faulty states. The histogram presents a comprehensive overview of the statistical distribution for five variables related to the studied dataset. MATLAB code and scripts are utilized for extracting relevant statistical features, and for identification of the most relevant features, decision tree algorithms were used. For training the ML algorithms the hyperparameters were selected by the Grid Search Method and the Principal component analysis (PCA) was enabled for the reduction of dimensionality and to simplify the data set. The various conditions of hobbing cutters were then classified using tree-based classification models, giving 100% classification accuracy. It helps to develop a novel condition monitoring system for CNC hobbing cutters using machine learning methods to identify problems in hobbing blades. This would ultimately lead to lower power consumption and enhanced performance of machine tools.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mechanical Engineering

  • ISSN

    1687-8132

  • e-ISSN

    1687-8140

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    001320696300001

  • EID of the result in the Scopus database