All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design and development of thermo-electromagnetic system for spinodal decompositions of FeCrCo alloys

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255776" target="_blank" >RIV/61989100:27230/24:10255776 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001286837500001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001286837500001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmrt.2024.07.161" target="_blank" >10.1016/j.jmrt.2024.07.161</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design and development of thermo-electromagnetic system for spinodal decompositions of FeCrCo alloys

  • Original language description

    Permanent magnets are essential components of electromechanical devices. Majority of magnets are used in permanent magnet motors that have extensive application in relation to energy efficiency and sustainability like electric vehicles. This research is aimed for efficient manufacturing of FeCrCo permanent magnets. Electromagnets could be utilized for the generation of continuous magnetic field to use in number of manufacturing processes. A two-pole electromagnet, comprising of two solenoids each having 2200 turns of copper wire, was developed. The system was designed to produce magnetic field up to 10 kilo Gauss for spinodal decomposition of FeCrCo alloy samples under thermomagnetic treatment process. Being rare earth free alloys, FeCrCo magnet is gaining research focus as an alternative magnetic alloy for advanced applications. The electromagnetic system design was refined and confirmed by using the Finite Element Method. The experimental values, of magnetic field generated by the two-pole electromagnet setup, were well close to the simulation results. The magnetizing setup was utilized to treat the FeCrCo magnetic alloy samples simultaneously at high temperature (700 oC) and magnetic field (7 kilo Gauss). This thermo-magnetic setup helped to improve the metallurgical structures of FeCrCo to grow and develop more efficiently. Treated samples of FeCrCo alloy demonstrated enhanced magnetic properties due to effective spinodal decomposition. The improvement in magnetic properties was attributed to the elimination of retained alpha phase and formation of more alpha-1 phase. (C) 2024 The Authors

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Materials Research and Technology

  • ISSN

    2238-7854

  • e-ISSN

    2214-0697

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    32

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    1000-1010

  • UT code for WoS article

    001286837500001

  • EID of the result in the Scopus database

    2-s2.0-85200147825