All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Many-objective ant lion optimizer (MaOALO): A new many-objective optimizer with its engineering applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10255842" target="_blank" >RIV/61989100:27230/24:10255842 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001286082900001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001286082900001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2024.e32911" target="_blank" >10.1016/j.heliyon.2024.e32911</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Many-objective ant lion optimizer (MaOALO): A new many-objective optimizer with its engineering applications

  • Original language description

    Many-objective optimization (MaO) is an important aspect of engineering scenarios. In many-objective optimization algorithms (MaOAs), a key challenge is to strike a balance between diversity and convergence. MaOAs employs various tactics to either enhance selection pressure for better convergence and/or implements additional measures for sustaining diversity. With increase in number of objectives, the process becomes more complex, mainly due to challenges in achieving convergence during population selection. This paper introduces a novel Many-Objective Ant Lion Optimizer (MaOALO), featuring the widely-popular ant lion optimizer algorithm. This method utilizes reference point, niche preserve and information feedback mechanism (IFM), to enhance the convergence and diversity of the population. Extensive experimental tests on five real-world (RWMaOP1- RWMaOP5) optimization problems and standard problem classes, including MaF1-MaF15 (for 5, 9 and 15 objectives), DTLZ1-DTLZ7 (for 8 objectives) has been carried out. It is shown that MaOALO is superior compared to ARMOEA, NSGA-III, MaOTLBO, RVEA, MaOABC-TA, DSAE, RL-RVEA and MaOEA-IH algorithms in terms of GD, IGD, SP, SD, HV and RT metrics. The MaOALO source code is available at: https://github.com/kanak02/MaOALO. (C) 2024 The Authors

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    39

  • Pages from-to

  • UT code for WoS article

    001286082900001

  • EID of the result in the Scopus database

    2-s2.0-85196397676