COMPARISON OF CHOSEN METAHEURISTIC ALGORITHMS FOR THE OPTIMIZATION OF THE ABRASIVE WATER JET TREATMENT PROCESS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F24%3A10256515" target="_blank" >RIV/61989100:27230/24:10256515 - isvavai.cz</a>
Result on the web
<a href="https://www.mmscience.eu/journal/issues/november-2024/articles/comparison-of-chosen-metaheuristic-algorithms-for-the-optimization-of-the-abrasive-water-jet-treatment-process" target="_blank" >https://www.mmscience.eu/journal/issues/november-2024/articles/comparison-of-chosen-metaheuristic-algorithms-for-the-optimization-of-the-abrasive-water-jet-treatment-process</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2024_11_2024098" target="_blank" >10.17973/MMSJ.2024_11_2024098</a>
Alternative languages
Result language
angličtina
Original language name
COMPARISON OF CHOSEN METAHEURISTIC ALGORITHMS FOR THE OPTIMIZATION OF THE ABRASIVE WATER JET TREATMENT PROCESS
Original language description
Abrasive waterjet machining (AWJ) is characterized by significantly better efficiency and better precision for difficult-to-machine materials than conventional machining technologies. However, the larger number of control parameters characterizing this process needs optimization. The study compares the performance of three nature-inspired metaheuristic algorithms, ALO, GWO, and MFO for optimizing the abrasive water jet (AWJ) treatment. The Response Surface Methodology was used to determine the cost function. The study evaluates the convergence and computational cost of the algorithms to aid future developments in this field. The study aims to maximize the cutting thickness by predicting the optimal water-abrasive cutting parameters (nozzle diameter, abrasive concentration, feed speed). For all three algorithms, the maximum cutting depth was determined to be 87.47 mm, which differs only less than 3% from the actual value. The results highlight the potential of ant-lion optimization (ALO), grey wolf optimizer (GWO), and (MFO) moth-flame optimization algorithms for resolving optimization issues in AWJ machining.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20301 - Mechanical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Volume of the periodical
2024
Issue of the periodical within the volume
November 2024
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
9
Pages from-to
7678-7686
UT code for WoS article
001350510400001
EID of the result in the Scopus database
—