Quadratic Programming and Scalable Algorithms for Variational Inequalities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F06%3A00013630" target="_blank" >RIV/61989100:27240/06:00013630 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quadratic Programming and Scalable Algorithms for Variational Inequalities
Original language description
We first review our recent results concerning optimal algorithms for the solution of bound and/or equality constrained quadratic programming problems. The unique feature of these algorithms is the rate of convergence in terms of bounds on the spectrum ofthe Hessian of the cost function. Then we combine these estimates with some results on the FETI method (FETI-DP, FETI and Total FETI) to get the convergence bounds that guarantee the scalability of the algorithms. i.e. asymptotically linear complexity and the time of solution inverse proportional to the number of processors. The results are confirmed by numerical experiments.
Czech name
Kvadratické programování a škálovatelné algoritmy pro variační nerovnice
Czech description
V práci jsou popsány výsledky autorů v oblas ti vývoje asymptoticky optimálních algoritmů pro řešení úloh kvadratického programování
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA101%2F04%2F1145" target="_blank" >GA101/04/1145: Development and implementation of scalable numerical methods for solving physically realistic models of contact problems with friction in 2D and 3D</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Numerical Mathematics and Advanced Applications - ENUMATH 2005
ISBN
3-540-34287-7
ISSN
—
e-ISSN
—
Number of pages
16
Pages from-to
61-76
Publisher name
Springer
Place of publication
Berlin
Event location
—
Event date
—
Type of event by nationality
—
UT code for WoS article
—