On a set of asymptotic densities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F08%3A00018998" target="_blank" >RIV/61989100:27240/08:00018998 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a set of asymptotic densities
Original language description
New theorems on a set of asymptotic densities that are generalizations of some previous author's results in the area are introduced and proved. Previous results are in: Jahoda, P., Pěluchová, M.: Systems of sets with multiplicative asymptotic density. InMathematica Slovaca, 2008, vol. 58, No 4, 393-404, Versita, co-published with Springer-Verlag GmbH, ISSN 0139-9918, DOI 10.2478/s12175-008-0083-2.
Czech name
O množinách asymptotických hustot
Czech description
Množiny asymptotických hustot. Jsou uvedeny a dokázány nové výsledky, které představují zobecnění výsledků uvedených v referenci: Jahoda, P., Pěluchová, M.: Systems of sets with multiplicative asymptotic density. In Mathematica Slovaca, 2008, vol. 58, No4, 393-404, Versita, co-published with Springer-Verlag GmbH, ISSN 0139-9918, DOI 10.2478/s12175-008-0083-2.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M06047" target="_blank" >1M06047: Research Center for Quality and Reliability of Production</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2008
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Universitatis Ostraviensis
ISSN
1214-8148
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
16
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—