Metaheuristic Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00020942" target="_blank" >RIV/61989100:27240/09:00020942 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Metaheuristic Based Scheduling Meta-Tasks in Distributed Heterogeneous Computing Systems
Original language description
Scheduling is a key problem in distributed heterogeneous computing systems in order to benefit from the large computing capacity of such systems and is an NP-complete problem. In this paper, we present a metaheuristic technique, namely the Particle SwarmOptimization (PSO) algorithm, for this problem. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. The scheduler aims at minimizing makespan, which is the time when finishes the latest task. Experimental studies show that the proposed method is more efficient and surpasses those of reported PSO and GA approaches for this problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F09%2F1494" target="_blank" >GA102/09/1494: New methods od data transmition based on turbo code</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SENSORS
ISSN
1424-8220
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
9
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
—
UT code for WoS article
000268317000016
EID of the result in the Scopus database
—