Using a Matrix Decomposition for Clustering Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00021001" target="_blank" >RIV/61989100:27240/09:00021001 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Using a Matrix Decomposition for Clustering Data
Original language description
There are many search engines in the web and when asked, they return a long list of search results, ranked by their relevancies to the given query. Web users have to go through the list and examine the titles and (short) snippets sequentially to identifytheir required results. In this paper we present how usage of Matrix Decomposition (Singular Value Decomposition (SVD) and Nonnegative Matrix Factorization (NMF)) can be good solution for the search results clustering.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0990" target="_blank" >GA201/09/0990: XML data processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS, PROCEEDINGS
ISBN
978-0-7695-3740-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
—
Publisher name
IEEE Computer Society
Place of publication
Los Alamitos, California
Event location
Fontainebleau, FRANCE
Event date
Jun 24, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000275189500003