Note on decomposition of K_{n,n} into (0,j)-prisms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00021385" target="_blank" >RIV/61989100:27240/09:00021385 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Note on decomposition of K_{n,n} into (0,j)-prisms
Original language description
R. Häggkvist proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K_{6n,6n}. In [CF] the first two authors established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph K_{n,n} into certain families of 3-regular graphs of order 2n. In this paper we tackle the problem of decompositions of K_{n,n} into 3-regular graphs some more. We will show that certain families of 3-regular graphs of order 2n decompose the complete bipartite graph K_{frac{3n}{2},frac{3n}{2}}.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science-Computational Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
5874
Issue of the periodical within the volume
5874
Country of publishing house
DE - GERMANY
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—