All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Note on decomposition of K_{n,n} into (0,j)-prisms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00021385" target="_blank" >RIV/61989100:27240/09:00021385 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Note on decomposition of K_{n,n} into (0,j)-prisms

  • Original language description

    R. Häggkvist proved that every 3-regular bipartite graph of order 2n with no component isomorphic to the Heawood graph decomposes the complete bipartite graph K_{6n,6n}. In [CF] the first two authors established a necessary and sufficient condition for the existence of a factorization of the complete bipartite graph K_{n,n} into certain families of 3-regular graphs of order 2n. In this paper we tackle the problem of decompositions of K_{n,n} into 3-regular graphs some more. We will show that certain families of 3-regular graphs of order 2n decompose the complete bipartite graph K_{frac{3n}{2},frac{3n}{2}}.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science-Computational Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    5874

  • Issue of the periodical within the volume

    5874

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database