All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A MULTI-SWARM SYNERGETIC OPTIMIZER FOR MULTI-KNOWLEDGE EXTRACTION USING ROUGH SET

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86075416" target="_blank" >RIV/61989100:27240/10:86075416 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    A MULTI-SWARM SYNERGETIC OPTIMIZER FOR MULTI-KNOWLEDGE EXTRACTION USING ROUGH SET

  • Original language description

    Finding reducts is one of the key problems in the increasing applications of rough set theory, which is also one of the bottlenecks of the rough set methodology. The population-based reduction approaches are attractive to find multiple reducts in the decision systems; which could be applied to generate multi-knowledge and to improve decision accuracy. In this paper, we design a multi-swarm synergetic optimization algorithm (MSSO) for rough set reduction and multi-knowledge extraction. It is a multi-swarm based search approach, in which different individual trends to be encoded to different, reduct. The approach discovers the best feature combinations in an efficient way to observe the change of positive region as the particles proceed throughout the search space. The performance of our approach is evaluated and compared with Standard Particle Swarm Optimization (SPSO) and Genetic Algorithms (GA).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    NEURAL NETWORK WORLD

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000281702900006

  • EID of the result in the Scopus database