User Segmentation Based on Finding Communities with Similar Behavior on the Web Site
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86077713" target="_blank" >RIV/61989100:27240/10:86077713 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/WI-IAT.2010.288" target="_blank" >http://dx.doi.org/10.1109/WI-IAT.2010.288</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WI-IAT.2010.288" target="_blank" >10.1109/WI-IAT.2010.288</a>
Alternative languages
Result language
angličtina
Original language name
User Segmentation Based on Finding Communities with Similar Behavior on the Web Site
Original language description
Web log analysis can be helpful in gaining information about the usability of the web site, web performance, for marketing purposes, or for development of business intelligence tools in e-commerce systems. User segmentation is one of the problems solvedin marketing and e-commerce sphere. Various software was developed to support web analysis. However, most of them provide only information through the tools based on statistics. In this paper there is presented the automatic user segmentation (clustering) based on the similar user's behavior on the web site. The user's behavior and behavioral patterns are extracted using process mining techniques; further user segmentation is provided by finding communities with similar behavior through two-step hierarchical clustering.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
ISBN
978-1-4244-8482-9
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
75-78
Publisher name
IEEE Computer Society
Place of publication
Los Alamitos, California
Event location
Toronto, Canada
Event date
Aug 31, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—