All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine learning techniques for prostate ultrasound image diagnosis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86080854" target="_blank" >RIV/61989100:27240/10:86080854 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-05177-7_19" target="_blank" >http://dx.doi.org/10.1007/978-3-642-05177-7_19</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-05177-7_19" target="_blank" >10.1007/978-3-642-05177-7_19</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine learning techniques for prostate ultrasound image diagnosis

  • Original language description

    Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this chapter, we present a machine learning scheme, employing a combination of fuzzy sets, wavelets and rough sets, for analyzing prostrate ultrasound images in order diagnose prostate cancer. To address the image noise problem we first utilize an algorithm based on type-II fuzzy sets to enhance the contrast of the ultrasound image. This is followed by performing a modified fuzzy c-mean clustering algorithm in order to detect the boundary of the prostate pattern. Then, a wavelet features are extracted and normalized, followed by application of a rough set analysis for discrimination of different regions of interest to determine whether they represent cancer or not. The experimental results obtained, show that the overall classification accuracy of

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studies in Computational Intelligence

  • ISSN

    1860-949X

  • e-ISSN

  • Volume of the periodical

    262

  • Issue of the periodical within the volume

    2010

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    19

  • Pages from-to

    385-403

  • UT code for WoS article

  • EID of the result in the Scopus database