All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86080658" target="_blank" >RIV/61989100:27240/11:86080658 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/nme.3187" target="_blank" >http://dx.doi.org/10.1002/nme.3187</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/nme.3187" target="_blank" >10.1002/nme.3187</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structure

  • Original language description

    The direct methods for the solution of systems of linear equations with a symmetric positive semidefinite matrix A usually comprise the Cholesky decomposition of a nonsingular diagonal block of A and effective evaluation of the action of a generalized inverse of the corresponding Schur complement. In this note we deal with both problems, paying special attention to the stiffness matrices of floating structures without mechanisms. We present a procedure which first identifies a well-conditioned positivedefinite diagonal block, then decomposes it by the Cholesky decomposition, and finally evaluates a generalized inverse of the Schur complement S. The Schur complement is typically very small, so the generalized inverse can be effectively evaluated by theSVD. If the rank of A or a lower bound on the nonzero eigenvalues of A are known, then the SVD can be implemented without any ``epsilon'. Moreover, if the kernel of A is known, then the SVD can be replaced by effective regularization. Th

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F07%2F0294" target="_blank" >GA201/07/0294: Qualitative analysis of contact problems with friction and asymptotically optimal algorithms for their solution</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

  • ISSN

    0029-5981

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    88

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    17

  • Pages from-to

    493-509

  • UT code for WoS article

    000295226800004

  • EID of the result in the Scopus database