Cholesky decomposition of a positive semidefinite matrix with known kernel
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86080660" target="_blank" >RIV/61989100:27240/11:86080660 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.amc.2010.12.069" target="_blank" >http://dx.doi.org/10.1016/j.amc.2010.12.069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2010.12.069" target="_blank" >10.1016/j.amc.2010.12.069</a>
Alternative languages
Result language
angličtina
Original language name
Cholesky decomposition of a positive semidefinite matrix with known kernel
Original language description
The Cholesky decomposition of a symmetric positive semidefinite matrix A is a useful tool for solving the related consistent system of linear equations or evaluating the action of a generalized inverse, especially when A is relatively large and sparse. To use the Cholesky decomposition effectively, it is necessary to identify reliably the positions of zero rows or columns of the factors and to choose these positions so that the nonsingular submatrix of A of the maximal rank is reasonably conditioned. The point of this note is to show how to exploit information about the kernel of A to accomplish both tasks. The results are illustrated by numerical experiments. (C) 2010 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0294" target="_blank" >GA201/07/0294: Qualitative analysis of contact problems with friction and asymptotically optimal algorithms for their solution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
—
Volume of the periodical
217
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
6067-6077
UT code for WoS article
000287690400006
EID of the result in the Scopus database
—