All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cholesky decomposition of a positive semidefinite matrix with known kernel

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86080660" target="_blank" >RIV/61989100:27240/11:86080660 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.amc.2010.12.069" target="_blank" >http://dx.doi.org/10.1016/j.amc.2010.12.069</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.amc.2010.12.069" target="_blank" >10.1016/j.amc.2010.12.069</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cholesky decomposition of a positive semidefinite matrix with known kernel

  • Original language description

    The Cholesky decomposition of a symmetric positive semidefinite matrix A is a useful tool for solving the related consistent system of linear equations or evaluating the action of a generalized inverse, especially when A is relatively large and sparse. To use the Cholesky decomposition effectively, it is necessary to identify reliably the positions of zero rows or columns of the factors and to choose these positions so that the nonsingular submatrix of A of the maximal rank is reasonably conditioned. The point of this note is to show how to exploit information about the kernel of A to accomplish both tasks. The results are illustrated by numerical experiments. (C) 2010 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F07%2F0294" target="_blank" >GA201/07/0294: Qualitative analysis of contact problems with friction and asymptotically optimal algorithms for their solution</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS AND COMPUTATION

  • ISSN

    0096-3003

  • e-ISSN

  • Volume of the periodical

    217

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    6067-6077

  • UT code for WoS article

    000287690400006

  • EID of the result in the Scopus database