Learning patterns from data by an evolutionary-fuzzy approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86080817" target="_blank" >RIV/61989100:27240/11:86080817 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-19644-7_14" target="_blank" >http://dx.doi.org/10.1007/978-3-642-19644-7_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-19644-7_14" target="_blank" >10.1007/978-3-642-19644-7_14</a>
Alternative languages
Result language
angličtina
Original language name
Learning patterns from data by an evolutionary-fuzzy approach
Original language description
There are various techniques for data mining and data analysis. Among them, hybrid approaches combining two or more algorithms gain importance as the complexity and dimension of real world data sets grows. In this paper, we present an application of evolutionary-fuzzy classification technique to data mining. Genetic programming is deployed to evolve a fuzzy classifier describing a set of anomalous patterns in data and the classifier is further used to prevent production of faulty products.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA102%2F09%2F1494" target="_blank" >GA102/09/1494: New methods od data transmition based on turbo code</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Soft Computing
ISSN
1615-3871
e-ISSN
—
Volume of the periodical
87
Issue of the periodical within the volume
—
Country of publishing house
DE - GERMANY
Number of pages
8
Pages from-to
127-135
UT code for WoS article
—
EID of the result in the Scopus database
—