Vertex-antimagic labelings of Regular Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084139" target="_blank" >RIV/61989100:27240/12:86084139 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10114-012-1018-y" target="_blank" >http://dx.doi.org/10.1007/s10114-012-1018-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10114-012-1018-y" target="_blank" >10.1007/s10114-012-1018-y</a>
Alternative languages
Result language
angličtina
Original language name
Vertex-antimagic labelings of Regular Graphs
Original language description
Let G = (V, E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V(G) boolean OR E(G) onto the set of consecutive integers 1, 2, ... , p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1, ... , r + 1.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Mathematica Sinica
ISSN
1439-8516
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
9
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
1865-1874
UT code for WoS article
000307427100011
EID of the result in the Scopus database
—