A note on 4-regular distance magic graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084141" target="_blank" >RIV/61989100:27240/12:86084141 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/12:86084141
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A note on 4-regular distance magic graphs
Original language description
Let G = (V,E) be a graph on n vertices. A bijection f: V of {1, 2,..., n} is called a distance magic labeling of G if there exists an integer k such that suma uEN(?) f(u) = k for all ? EV, where N(?) is the set of all vertices adjacent to ?. The constantk is the magic constant of f and any graph which admits a distance magic labeling is a distance magic graph. In this paper we solve some of the problems posted in a recent survey paper on distance magic graph labelings by Arumugam et al. We classify allorders n for which a 4-regular distance magic graph exists and by this we also show that there exists a distance magic graph with k = 2t for every integer t more equal 6.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Australasian Journal of Combinatorics
ISSN
1034-4942
e-ISSN
—
Volume of the periodical
54
Issue of the periodical within the volume
2
Country of publishing house
AU - AUSTRALIA
Number of pages
6
Pages from-to
127-132
UT code for WoS article
—
EID of the result in the Scopus database
—