All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A shape optimization method for nonlinear axisymmetric magnetostatics using a coupling of finite and boundary elements

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084480" target="_blank" >RIV/61989100:27240/12:86084480 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27350/12:86084480

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.matcom.2011.01.015" target="_blank" >http://dx.doi.org/10.1016/j.matcom.2011.01.015</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.matcom.2011.01.015" target="_blank" >10.1016/j.matcom.2011.01.015</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A shape optimization method for nonlinear axisymmetric magnetostatics using a coupling of finite and boundary elements

  • Original language description

    In this paper we propose a method for constrained shape optimization governed with a nonlinear axisymmetric magnetostatic state problem and we apply it to an optimal shape design of an electromagnet. The state problem is solved via Hiptmair's symmetric coupling of finite elements employed in the interior ferromagnetic domain and boundary elements modelling the exterior air domain as well as current excitations. As a novelty we derive Duffy regularization transforms of the boundary element integrals forthe axisymmetric case, which are then evaluated using a tensor-product Gaussian quadrature. Nonlinear ferromagnetic behaviour is resolved by Newton iterations. The optimization method under both linear and nonlinear constraints relies on the active-set steepest-descent search, projections onto the set of linearized constraints, and an adjoint method of shape sensitivity analysis. Shape perturbations influence grid deformation via a solution to an auxiliary torsion-free linear elasticity

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematics and computers in simulation

  • ISSN

    0378-4754

  • e-ISSN

  • Volume of the periodical

    82

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    1721-1731

  • UT code for WoS article

    000308519900002

  • EID of the result in the Scopus database