A shape optimization method for nonlinear axisymmetric magnetostatics using a coupling of finite and boundary elements
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084480" target="_blank" >RIV/61989100:27240/12:86084480 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27350/12:86084480
Result on the web
<a href="http://dx.doi.org/10.1016/j.matcom.2011.01.015" target="_blank" >http://dx.doi.org/10.1016/j.matcom.2011.01.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2011.01.015" target="_blank" >10.1016/j.matcom.2011.01.015</a>
Alternative languages
Result language
angličtina
Original language name
A shape optimization method for nonlinear axisymmetric magnetostatics using a coupling of finite and boundary elements
Original language description
In this paper we propose a method for constrained shape optimization governed with a nonlinear axisymmetric magnetostatic state problem and we apply it to an optimal shape design of an electromagnet. The state problem is solved via Hiptmair's symmetric coupling of finite elements employed in the interior ferromagnetic domain and boundary elements modelling the exterior air domain as well as current excitations. As a novelty we derive Duffy regularization transforms of the boundary element integrals forthe axisymmetric case, which are then evaluated using a tensor-product Gaussian quadrature. Nonlinear ferromagnetic behaviour is resolved by Newton iterations. The optimization method under both linear and nonlinear constraints relies on the active-set steepest-descent search, projections onto the set of linearized constraints, and an adjoint method of shape sensitivity analysis. Shape perturbations influence grid deformation via a solution to an auxiliary torsion-free linear elasticity
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and computers in simulation
ISSN
0378-4754
e-ISSN
—
Volume of the periodical
82
Issue of the periodical within the volume
10
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
11
Pages from-to
1721-1731
UT code for WoS article
000308519900002
EID of the result in the Scopus database
—