Knowledge discovery from road traffic accident data in Ethiopia: Data quality, ensembling and trend analysis for improving road safety
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084520" target="_blank" >RIV/61989100:27240/12:86084520 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/12:86084520
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Knowledge discovery from road traffic accident data in Ethiopia: Data quality, ensembling and trend analysis for improving road safety
Original language description
Descriptive analysis of the magnitude and situation of road safety in general and road accidents in particular is important, but understanding of data quality, factors related with dangerous situations and various interesting patterns in data is of evengreater importance. Under the umbrella of information architecture research for road safety in developing countries, the objective of this machine learning experimental research is to explore data quality issues, analyze trends and predict the role of road users on possible injury risks. The research employed Tree Net, Classification and Adaptive Regression Trees (CART), Random Forest (RF) and hybrid ensemble approach. To identify relevant patterns and illustrate the performance of the techniques for the road safety domain, road accident data collected from Addis Ababa Traffic Office is subject to several analyses. Empirical results illustrate that data quality is a major problem that needs architectural guideline and the prototype mode
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
22
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
30
Pages from-to
215-244
UT code for WoS article
000306821100001
EID of the result in the Scopus database
—