Resolving Mixed Pixels by Hybridization of Biogeography Based Optimization and Ant Colony Optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084576" target="_blank" >RIV/61989100:27240/12:86084576 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Resolving Mixed Pixels by Hybridization of Biogeography Based Optimization and Ant Colony Optimization
Original language description
Recent advances in remote sensing techniques made research possible in those areas where human hands are inaccessible. Digital Imagery brings the virtual image of a desired location, which requires some pre-processing to bring the view to an optimal level. Accuracy level in image classification is assumed on the categorization of the pixel into one of the several land cover classes. When the recognition of pixel accounts for two different classes at the same time, the resulting pixel is categorized as amixed pixel. This paper proposes a novel approach by clustering the dataset of mixed pixel and thereafter implementing fusion of Ant Colony Optimization (ACO) and Biogeography Based Optimization (BBO) thereby resolving the problem of mixed pixels.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2012 IEEE Congress on Evolutionary Computation (CEC), 2012
ISBN
978-1-4673-1509-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
IEEE
Place of publication
New York
Event location
Brisbane
Event date
Jun 10, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—