All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86085078" target="_blank" >RIV/61989100:27240/12:86085078 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/12:86085078

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s10107-011-0454-2" target="_blank" >http://dx.doi.org/10.1007/s10107-011-0454-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10107-011-0454-2" target="_blank" >10.1007/s10107-011-0454-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications

  • Original language description

    We propose a modification of our MPGP algorithm for the solution of bound constrained quadratic programming problems so that it can be used for minimization of a strictly convex quadratic function subject to separable convex constraints. Our active set based algorithm explores the faces by conjugate gradients and changes the active sets and active variables by gradient projections, possibly with the superrelaxation steplength. The error estimate in terms of extreme eigenvalues guarantees that if a classof minimization problems has the spectrum of the Hessian matrix in a given positive interval, then the algorithm can find and recognize an approximate solution of any particular problem in a number of iterations that is uniformly bounded. We also show how to use the algorithm for the solution of separable and equality constraints. The power of our algorithm and its optimality are demonstrated on the solution of a problem of two cantilever beams in mutual contact with Tresca friction dis

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Programming

  • ISSN

    0025-5610

  • e-ISSN

  • Volume of the periodical

    135

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    26

  • Pages from-to

    195-220

  • UT code for WoS article

    000308647100007

  • EID of the result in the Scopus database