An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86085078" target="_blank" >RIV/61989100:27240/12:86085078 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/12:86085078
Result on the web
<a href="http://dx.doi.org/10.1007/s10107-011-0454-2" target="_blank" >http://dx.doi.org/10.1007/s10107-011-0454-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10107-011-0454-2" target="_blank" >10.1007/s10107-011-0454-2</a>
Alternative languages
Result language
angličtina
Original language name
An optimal algorithm and superrelaxation for minimization of a quadratic function subject to separable convex constraints with applications
Original language description
We propose a modification of our MPGP algorithm for the solution of bound constrained quadratic programming problems so that it can be used for minimization of a strictly convex quadratic function subject to separable convex constraints. Our active set based algorithm explores the faces by conjugate gradients and changes the active sets and active variables by gradient projections, possibly with the superrelaxation steplength. The error estimate in terms of extreme eigenvalues guarantees that if a classof minimization problems has the spectrum of the Hessian matrix in a given positive interval, then the algorithm can find and recognize an approximate solution of any particular problem in a number of iterations that is uniformly bounded. We also show how to use the algorithm for the solution of separable and equality constraints. The power of our algorithm and its optimality are demonstrated on the solution of a problem of two cantilever beams in mutual contact with Tresca friction dis
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Programming
ISSN
0025-5610
e-ISSN
—
Volume of the periodical
135
Issue of the periodical within the volume
1-2
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
195-220
UT code for WoS article
000308647100007
EID of the result in the Scopus database
—