Extensional logic of hyperintensions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86087811" target="_blank" >RIV/61989100:27240/12:86087811 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-28279-9_19" target="_blank" >http://dx.doi.org/10.1007/978-3-642-28279-9_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-28279-9_19" target="_blank" >10.1007/978-3-642-28279-9_19</a>
Alternative languages
Result language
angličtina
Original language name
Extensional logic of hyperintensions
Original language description
In this paper I describe an extensional logic of hyperintensions, viz. Tichý's Transparent Intensional Logic (TIL). TIL preserves transparency and compositionality in all kinds of context, and validates quantifying into all contexts, including intensional and hyperintensional ones. The availability of an extensional logic of hyperintensions defies the received view that an intensional (let alone hyperintensional) logic is one that fails to validate transparency, compositionality, and quantifying-in. Themain features of our logic are that the senses and denotations of (non-indexical) terms and expressions remain invariant across contexts and that our ramified type theory enables quantification over any logical objects of any order. The syntax of TIL isthe typed lambda calculus; its semantics is based on a procedural redefinition of, inter alia, functional abstraction and application. The only two non-standard features are a hyperintension (called Trivialization) that presents other hy
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Lecture Notes in Computer Science. Volume 7260
ISBN
978-3-642-28278-2
Number of pages of the result
33
Pages from-to
268-290
Number of pages of the book
336
Publisher name
Springer
Place of publication
Berlin
UT code for WoS chapter
—