Research of neural network classifier based on FCM and PSO for breast cancer classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86092953" target="_blank" >RIV/61989100:27240/12:86092953 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-28942-2_58" target="_blank" >http://dx.doi.org/10.1007/978-3-642-28942-2_58</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-28942-2_58" target="_blank" >10.1007/978-3-642-28942-2_58</a>
Alternative languages
Result language
angličtina
Original language name
Research of neural network classifier based on FCM and PSO for breast cancer classification
Original language description
Breast cancer is one of the most common tumors related to death in women in many countries. In this paper, a novel neural network classification model is developed. The proposed model uses floating centroids method and particle swarm optimization algorithm with inertia weight as optimizer to improve the performance of neural network classifier. Wisconsin breast cancer datasets in UCI Machine Learning Repository are tested with neural network classifier of the proposed method. Experimental results show that the developed model improves search convergence and performance. The accuracy of classification of benign and malignant tumors could be improved by the developed method compared with other classification techniques. 2012 Springer-Verlag.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science. Volume 7208
ISBN
978-3-642-28941-5
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
647-654
Publisher name
Springer Heidelberg
Place of publication
Berlín
Event location
Salamanca
Event date
Mar 28, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—