All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Research of neural network classifier based on FCM and PSO for breast cancer classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86092953" target="_blank" >RIV/61989100:27240/12:86092953 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-28942-2_58" target="_blank" >http://dx.doi.org/10.1007/978-3-642-28942-2_58</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-28942-2_58" target="_blank" >10.1007/978-3-642-28942-2_58</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Research of neural network classifier based on FCM and PSO for breast cancer classification

  • Original language description

    Breast cancer is one of the most common tumors related to death in women in many countries. In this paper, a novel neural network classification model is developed. The proposed model uses floating centroids method and particle swarm optimization algorithm with inertia weight as optimizer to improve the performance of neural network classifier. Wisconsin breast cancer datasets in UCI Machine Learning Repository are tested with neural network classifier of the proposed method. Experimental results show that the developed model improves search convergence and performance. The accuracy of classification of benign and malignant tumors could be improved by the developed method compared with other classification techniques. 2012 Springer-Verlag.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 7208

  • ISBN

    978-3-642-28941-5

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    647-654

  • Publisher name

    Springer Heidelberg

  • Place of publication

    Berlín

  • Event location

    Salamanca

  • Event date

    Mar 28, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article