Supervised Learning of Photovoltaic Power Plant Output Prediction Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088091" target="_blank" >RIV/61989100:27240/13:86088091 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/13:86088091
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Supervised Learning of Photovoltaic Power Plant Output Prediction Models
Original language description
This study presents an application of evolutionary fuzzy rules to the modeling and prediction of power output of a real-world Photovoltaic Power Plant (PVPP). The method is compared to arti cial neural networks and support vector regression that were also used to build predictors in order to analyze a time-series like data describing the production of the PVPP. The models of the PVPP are created using di ferent supervised machine learning methods in order to forecast the short-term output of the power plant and compare the accuracy of the prediction.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JE - Non-nuclear power engineering, energy consumption and utilization
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
18
Pages from-to
321-338
UT code for WoS article
000325193300004
EID of the result in the Scopus database
—