All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Image segmentation using iterated graph cuts with residual graph

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088519" target="_blank" >RIV/61989100:27240/13:86088519 - isvavai.cz</a>

  • Result on the web

    <a href="http://link.springer.com/chapter/10.1007%2F978-3-642-41914-0_23" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-41914-0_23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-41914-0_23" target="_blank" >10.1007/978-3-642-41914-0_23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Image segmentation using iterated graph cuts with residual graph

  • Original language description

    In this paper, we present a new image segmentation method using iterated graph cuts. In the standard graph cuts method, the data term is computed on the basis of the brightness/color distribution of object and background. In this case, some background regions with the brightness/color similar to the object may be incorrectly labeled as an object. We try to overcome this drawback by introducing a new data term that reduces the importance of brightness/color distribution. This reduction is realised by a new part that uses data from a residual graph that remains after performing the max-flow algorithm. According to the residual weights, we change the weights of t-links in the graph and find a new cut on this graph. This operation makes our method iterative. The results and comparison with other graph cuts methods are presented.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 8033

  • ISBN

    978-3-642-41913-3

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    228-237

  • Publisher name

    Springer Verlag

  • Place of publication

    London

  • Event location

    Rethymnon

  • Event date

    Jul 29, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article