All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On R-linear convergence of semi-monotonic inexact augmented Lagrangians for bound and equality constrained quadratic programming problems with application

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092156" target="_blank" >RIV/61989100:27240/14:86092156 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092156

  • Result on the web

    <a href="http://ac.els-cdn.com/S0898122113006652/1-s2.0-S0898122113006652-main.pdf?_tid=ae73070c-c894-11e4-b7a9-00000aab0f27&acdnat=1426150343_7b40d5a35d20b7bb0317cf3ef04a9810" target="_blank" >http://ac.els-cdn.com/S0898122113006652/1-s2.0-S0898122113006652-main.pdf?_tid=ae73070c-c894-11e4-b7a9-00000aab0f27&acdnat=1426150343_7b40d5a35d20b7bb0317cf3ef04a9810</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.camwa.2013.11.009" target="_blank" >10.1016/j.camwa.2013.11.009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On R-linear convergence of semi-monotonic inexact augmented Lagrangians for bound and equality constrained quadratic programming problems with application

  • Original language description

    New convergence results for a variant of the inexact augmented Lagrangian algorithm SMALBE [Z. Dostál, An optimal algorithm for bound and equality constrained quadratic programming problems with bounded spectrum, Computing 78 (2006) 311-328] for the solution of strictly convex bound and equality constrained quadratic programming problems are presented. The algorithm SMALBE-M presented here uses a fixed regularization parameter and controls the precision of the solution of auxiliary bound constrained problems by a multiple of the norm of violation of the equality constraints and a constant which is updated in order to enforce the increase of Lagrangian function. A nice feature of SMALBE-M is its capability to find an approximate solution of important classes of problems in a number of iterations that is independent of the conditioning of the equality constraints. Here we prove the R-linear rate of convergence of the outer loop of SMALBE-M for any positive regularization parameter after

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computers &amp; Mathematics with Applications

  • ISSN

    0898-1221

  • e-ISSN

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    515-526

  • UT code for WoS article

    000331506500003

  • EID of the result in the Scopus database