All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An experimental analysis of the Echo State Network initialization using the Particle Swarm Optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092410" target="_blank" >RIV/61989100:27240/14:86092410 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092410

  • Result on the web

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6921880" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6921880</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NaBIC.2014.6921880" target="_blank" >10.1109/NaBIC.2014.6921880</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An experimental analysis of the Echo State Network initialization using the Particle Swarm Optimization

  • Original language description

    This article introduces a robust hybrid method for solving supervised learning tasks, which uses the Echo State Network (ESN) model and the Particle Swarm Optimization (PSO) algorithm. An ESN is a Recurrent Neural Network with the hidden-hidden weights fixed in the learning process. The recurrent part of the network stores the input information in internal states of the network. Another structure forms a free memory method used as supervised learning tool. The setting procedure for initializing the recurrent structure of the ESN model can impact on the model performance. On the other hand, the PSO has been shown to be a successful technique for finding optimal points in complex spaces. Here, we present an approach to use the PSO for finding some initial hidden-hidden weights of the ESN model. We present empirical results that compare the canonical ESN model with this hybrid method on a wide range of benchmark problems.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NaBIC 2014 ; CASoN 2014 : July 30-31, Porto, Portugal

  • ISBN

    978-1-4799-5937-2

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    214-219

  • Publisher name

    IEEE

  • Place of publication

    New York

  • Event location

    Porto

  • Event date

    Jul 30, 2014

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article